domingo, 24 de junio de 2012

EMPUJE, VOLUMEN Y GASTO


El teorema fundamental de la hidrostática

¿Por qué las paredes de un dique van aumentando su espesor hacia el fondo del lago? ¿Por qué aparecen las várices en las piernas?
Es un hecho experimental conocido que la presión en el seno de un líquido aumenta con la profundidad. Busquemos una expresión matemática que nos permita calcularla. Para ello, consideremos una superficie imaginaria horizontal S, ubicada a una profundidad h como se muestra en la figura de la derecha.
La presión que ejerce la columna de líquido sobre la superficie amarilla será:
p = Peso del líquido/Area de la base
Con matemática se escribe: p = P/S = (d . V)/S=(d . S . h)/S= d . h (porque la S se simplifican)
donde p es el peso específico del líquido y V es el volumen de la columna de fluido que descansa sobre la superficie S.
Es decir que la presión que ejerce un líquido en reposo depende del peso específico (p) del líquido y de la distancia (h) a la superficie libre de éste.
Si ahora consideramos dos puntos A y B a diferentes profundidades de una columna de líquido en equilibrio, el mismo razonamiento nos permite afirmar que la diferencia de presión será:
PA —PB = p . hA— d . hB
Este resultado constituye el llamado teorema fundamental de la hidrostática:
La diferencia de presión entre dos puntos dentro de una misma masa líquida es el producto del peso específico del líquido por la distancia vertical que los separa.
Ésta es la razón por la cual dos puntos de un fluido a igual profundidad estarán a igual presión. Por el contrario, si la presión en ambos puntos no fuera la misma, existiría una fuerza horizontal desequilibrada y el líquido fluiría hasta hacer que la presión se igualara, alcanzando una situación de equilibrio.
Hasta aquí sólo hemos encontrado la expresión de la presión que ejerce el líquido sobre un cuerpo —imaginario o no— sumergido en una determinada profundidad h. Ahora bien, ¿cuál es la presión total ejercida en el cuerpo? Si tenemos en cuenta que, probablemente, por encima del líquido hay aire (que también es un fluido), podemos afirmar que la presión total ejercida sobre el cuerpo es debida a la presión de la columna del líquido más la presión que ejerce el aire sobre la columna. Es decir:
P = Paire + Plíquido = Patmosférica + d . h
Este resultado tiene generalidad y puede ser deducido del teorema fundamental de la hidrostática. Veamos cómo. Si consideramos que el punto B se encuentra exactamente en la superficie del líquido, la presión en A es:
PA= PB+ d . Ah = Psuperficie + P. (hA-hB) = Patmosférica + d . h
Los vasos comunicantes son recipientes comunicados entre sí, generalmente por su base. No importa cuál sea la forma y el tamaño de los recipientes; en todos ellos, el líquido alcanza la misma altura.
Cuando tenemos un recipiente vertical conteniendo un liquido y le hacemos perforaciones en sus paredes, las emisiones del liquido de los agujeros de la base tendrán mayor alcance que las emisiones de arriba, ya que a mayor profundidad hay mayor presión.
EL EMPUJE: PRINCIPIO DE ARQUÍMEDES 

Resulta evidente que cada vez que un cuerpo se sumerge en un líquido es empujado de alguna manera por el fluido. A veces esa fuerza es capaz de sacarlo a flote y otras sólo logra provocar una aparente pérdida de peso. Pero, ¿cuál es el origen de esa fuerza de empuje? ¿De qué depende su intensidad?
Sabemos que la presión hidrostática aumenta con la profundidad y conocemos también que se manifiesta mediante fuerzas perpendiculares a las superficies sólidas que contacta. Esas fuerzas no sólo se ejercen sobre las paredes del contenedor del líquido sino también sobre las paredes de cualquier cuerpo sumergido en él.
Distribución de las fuerzas sobre un cuerpo sumergido
Imaginemos diferentes cuerpos sumergidos en agua y representemos la distribución de fuerzas sobre sus superficies teniendo en cuenta el teorema general de la hidrostática. La simetría de la distribución de las fuerzas permite deducir que la resultante de todas ellas en la dirección lwrizontal será cero. Pero en la dirección vertical las fuerzas no se compensan: sobre la parte superior de los cuerpos actúa una fuerza neta hacia abajo, mientras que sobre la parte inferior, una fuerza neta hacia arriba. Como la presión crece con la profundidad, resulta más intensa la fuerza sobre la superficie inferior. Concluimos entonces que: sobre el cuerpo actúa una resultante vertical hacia arriba que llamamos empuje.  


HIDROSTÁTICA
Es, la rama de la hidráulica que estudia las presiones y fuerzas producidas por un liquido en reposo y sus condiciones de equilibrio.
Presión hidrostática:

Hidráulica Se define presión como el cociente entre la componente normal de la fuerza sobre una superficie y el área de dicha superficie.
Hidráulica
La unidad de medida recibe el nombre de pascal (Pa).


la presión hidrostática se clasifica en:
Absoluta, cuando se toma en cuenta la presión atmosférica.
Relativa, cuando no se toma en cuenta la presión atmosférica, en ingeniería se le denomina presión hidrostática.
Unitaria, cuando su intensidad se refiere a la unidad de area.
Total, cuando se refiere a toda una superficie y corresponde a la intensidad del empuje hidrostático.
Se mide en unidades de fuerza entre unidades de area (kg/m2, kg/cm2, lb/pie2 o derivadas).

Volumen

El volumen es una magnitud escalar definida como el espacio ocupado por un cuerpo. Es una función derivada ya que se halla multiplicando las tres dimensiones.
En matemáticas el volumen es una medida que se define como los demás conceptos métricos a partir de una distancia o tensor métrico.
En física, el volumen es una magnitud física extensiva asociada a la propiedad de los cuerpos físicos de ser extensos o materiales.
La unidad de medida de volumen en el Sistema Internacional de Unidades es el metro cúbico, aunque temporalmente también acepta el litro, que se utiliza comúnmente en la vida práctica.



El volumen y la capacidad

La capacidad y el volumen son términos que se encuentran estrechamente relacionados. Se define la capacidad como el espacio vacío de alguna cosa que es suficiente para contener a otra u otras cosas. Se define el volumen como el espacio que ocupa un cuerpo. Por lo tanto, entre ambos términos existe una equivalencia que se basa en la relación entre el litro (unidad de capacidad) y el decímetro cúbico (unidad de volumen).
Este hecho puede verificarse experimentalmente de la siguiente manera: si se tiene un recipiente con agua que llegue hasta el borde, y se introduce en él un cubo sólido cuyas aristas midan 1 decímetro (1 dm3), se derramará 1 litro de agua. Por tanto, puede afirmarse que:
1 dm3 = 1 litro
Equivalencias
1 dm3 = 0,001 m3 = 1.000 cm3

Unidades de volumen

Se clasifican de la siguiente manera en tres categorías:
  • Unidades de volumen sólido: Miden al volumen de un cuerpo utilizando unidades de longitud elevadas a la tercera potencia. Se le dice volumen sólido porque en geometría se utiliza para medir el espacio que ocupan los cuerpos tridimensionales, y se da por hecho que el interior de esos cuerpos no es hueco sino que es sólido.
  • Unidades de volumen líquido. Estas unidades fueron creadas para medir el volumen que ocupan los líquidos dentro de un recipiente.
  • Unidades de volumen de áridos, también llamadas tradicionalmente unidades de capacidad. Estas unidades fueron creadas para medir el volumen que ocupan las cosechas (legumbres, tubérculos, forrajes y frutas) almacenadas en graneros y silos. Estas unidades fueron creadas porque hace muchos años no existía un método adecuado para pesar todas las cosechas en un tiempo breve, y era más práctico hacerlo usando volúmenes áridos. Actualmente estas unidades son poco utilizadas porque ya existe tecnología para pesar la cosecha en tiempo breve.

Gasto másico

Gasto másico o Flujo másico es en física la magnitud que expresa la variación de la masa en el tiempo. Matemáticamente es la diferencial de la masa con respecto al tiempo. Se trata de algo frecuente en sistemas termodinámicos, pues muchos de ellos (tuberías, toberas, turbinas, compresores, difusores...) actúan sobre un fluido que lo atraviesa. Su unidad es el kg/s

Se puede expresar el flujo másico como la densidad (\rho, que puede estar en función de la posición, \rho(r)) por un diferencial de volumen
{dm = \rho(r) \cdot dV} = {\rho \cdot Q}
donde Q se refiere al gasto hidráulico.
Este volumen a su vez se puede expresar como el producto de una superficie S (el ancho de la tubería entrante, normalmente), que también puede depender de la posición por un diferencial de longitud (la porción de dicha tubería cuyo contenido entra en el sistema por unidad de tiempo).
{dm = \rho(r) \cdot S(r) \cdot dr}
Normalmente se supone flujo unidimensional, es decir, con unas densidades y secciones constantes e independientes de la posición lo que permite reducirlo a la siguiente fórmula
\dot m = \rho V S
Donde:
\dot m = Gasto másico
\rho = Densidad del fluido
V = Velocidad del fluido
S = Área del tubo corriente
o, integrando
\delta m = \rho V S
En el caso de tener diversos flujos de entrada y salida se consideran la sumas de estos. En un sistema en estado estacionario se puede deducir que la variación de masa ha de ser 0 y por tanto podemos establecer:
\sum_{e=1}^x \dot m_{e} = \sum_{s=1}^y \dot m_{s}
Donde:
x = número de entradas
y = número de salidas
Cumpliendo así con la Primera ley de la termodinámica.


No hay comentarios:

Publicar un comentario